An XGBoost-based Optimization Framework for Vehicle Reidentification at Intersection Approach

Pramesh Pudasaini

Ph.D. Student

December 1, 2023

Presented at the CE596 Seminar as part of

the Roots for Resilience Fellowship Program

Outline

Roots for Resilience (R4R) Scholarship

- Program Overview
- FOSS Sessions

Vehicle Reidentification Research

- Study Site & Data
- Methodology
- Results & Discussions

Roots for Resilience (R4R) in Data Science Scholarship

Roots for Resilience in Data Science Scholarship

Background

- Co-led by Arizona Institute for Resilience (AIR), CyVerse, and Data Science Institute (DSI)
- 10 scholarships awarded in Fall 2023
 - One grad student per department
- Eligibility criteria
 - PhD candidates or Master's students
 - Completed qualifying exams, not defended dissertation
 - Acceptance contract from advisor
- 7,000\$ scholarship

Program Goals

- Train students in using open science and computational tools
 - Regular meetings with members of CyVerse and DSI
 - Develop data science capabilities across AIR's participating departments and research groups.
 - Accelerate research projects of participating fellows and their home department research groups.
 - Build professional networks for addressing large-scale challenges and research questions of interest to AIR.
 - Develop new interdisciplinary collaborations across AIR, DSI, CyVerse, and academic units for writing new proposals.
 - Develop a cohort among participants (and Data Science Ambassadors) to support each other in their own research and efforts to engage their departments.

Institutions Involved

Arizona Institute for Resilience (AIR)

<u>air.arizona.edu</u>

 Develop and apply diverse knowledge in solving environmental problems through interdisciplinary research and experimental learning

CyVerse

- Computational platform for open science
- Promotes data science training
- Sign up with UArizona NetID for free access to

Data Science Institute (DSI)

University-wide interdisciplinary collaboration

datascience.arizona.edu

- 3 TB of data storage
- 20,000 compute units/year*
- · Ability to run 4 concurrent jobs
- Ability to share unlimited data files or ap
- 10 permanent identifiers (DOIs) for data
- A seat at any 4 CyVerse workshops (For ChatGPT Prompt Engineering, etc.)
- · Advanced features and APIs
- Access to webinars
- Workshop resources to use CyVerse for
- Screen share support

Program Structure

Time commitment

- 5-10 hrs/week
- Foundational Open Science Skills (FOSS) workshop
 - Weekly 2-hr sessions
- Weekly cohort meetings (90 min)

Program requirements

- Weekly homework (journal entries on GitHub)
- Capstone project
- Departmental presentation at end of semester

FOSS Sessions

foss.cyverse.org

Open Science Skills

Lessons

- 0. The Shell and Git
- 1. Open Science
- 2. Managing Data
- 3. Project Management
- 4. Documentation and Communication
- 5. Version Control
- 6. Reproducibility I: Repeatability
- 7. Reproducibility II: Containers

Week	Date	Content	Instructor(s)
Week 0	Sept 7	pre-FOSS workshop: - Unix shell basics - Git/GitHub basics - ChatGPT & LLMs	Michele Cosi & Jeff Gillan
Week 1	Sept 14	Workshop introduction: - Intro to Open Science	Tyson Swetnam, Michele Cosi, Jeff Gillan
Week 2	Sept 21	Data management: - FAIR data - Data Management Plans - Processing activity	Jeff Gillan, Michele Cosi Guest Speaker: Wade Bishop, UTK
Week 3	Sept 28	- Project management - Intro to CyVerse	Michele Cosi, Tyson Swetnam
Week 4	Oct 5	Documentation / Communication: - Internal + External Documentation - Internal + External Communication - GitHub Pages websites	Michele Cosi, Jeff Gillan
Week 5	Oct 12	Version Control - Version control as a philosophy - GitHub functionality Version control everything	Michele Cosi, Guest Speaker: Jason Williams, CSH
Week 6	Oct 19	Reproducibility I: - Software installation - Software management	Jeff Gillan, Michele Cosi
Week 7	Oct 26	Reproducibility II: - Brief intro to containers	Michele Cosi, Jeffrey Gillan
Week 8	Nov 2	Capstone Presentations	

Use of Al Tools

Personal Website using GitHub Pages

Learning Outcomes

Research on Vehicle Reidentification

Research Motivation

- Signalized intersections
 - Driver's behavior
 - Yellow onset
- Vehicle reidentification (Reld)
 - Advance and stop-bar detectors
 - Collect signal change & actuation data
 - Detectors: loops or video-based
 - Advantages of loop detectors
- Scope & practical implications

Existing Reidentification Methods

Limitations

- ReId accuracy not reported
- Velocity measured from detectors
- A priori knowledge of vehicle length
- Lane changing not considered
- Long vehicles not considered
- Not easily transferable
- Not reliably accurate

Window Searching Method

Study Site & Data

High-resolution events data

TimeStamp	EventID	Parameter
2022-12-06 07:45:46.700	1	2
2022-12-06 07:46:35.000	8	2
2022-12-06 07:46:38.600	10	2
2022-12-06 07:47:35.400	1	2
2022-12-06 07:48:35.000	8	2
2022-12-06 07:48:38.600	10	2
2022-12-06 07:49:51.700	1	2
2022-12-06 07:50:35.000	8	2
2022-12-06 07:50:38.600	10	2

Y				
ļ	Tim	eStamp	EventID	Parameter
2022	-12-06	07:46:12.300	82	11
2022-	-12-06	07:46:12.300	81	9
2022	-12-06	07:46:12.400	81	10
2022-	-12-06	07:46:12.800	82	29
2022-	-12-06	07:46:13.100	82	10
2022	-12-06	07:46:13.100	81	29
2022-	-12-06	07:46:13.200	82	9
2022	-12-06	07:46:13.300	81	11
2022-	-12-06	07:46:14.100	81	10

Signal phase changes

Detector actuations

Dataset 1: with video recordings

- Period: 7.5 hours

- Date: 12/6/2022, 12/14/2022, 3/27/2023

Dataset 2: without video recordings

- Period: 14 days

- Date: January 1-7 & 15-21 in 2023

Data Processing

- Pre-processing
- 2. Processing signal change& actuation events
- Filtering actuations at yellow onset

Proposed Reidentification Framework

Manual Inference of Reld Pairs

Travel Time Prediction

Features for Travel Time Prediction

Category	Feature names	Feature description	Feature type
	volume_15	Arrival volume at advance location during 15-min interval	Count
	volume_cycle	Arrival volume at advance location during a cycle	Count
5	car_follow	Car-following behavior at advance detector $(1 = yes, 0 = no)$	Binary
Detector actuation	occ_time	Occupancy time over advance detector	Continuous
	headway_foll	Headway between target and leading vehicle at advance detector	Continuous
	headway_lead	Headway between target and following vehicle at advance detector	Continuous
	gap_foll	Gap between target and leading vehicle at advance detector	Continuous
Signal	AIY	Arrival time in yellow at advance detector	Continuous
phase	is_SCA_GY	Signal change during actuation = GY ? (1 = yes, 0 = no)	Binary
change & detector	is_SCA_YY	Signal change during actuation = YY? $(1 = yes, 0 = no)$	Binary
actuation	is_SCA_YR	Signal change during actuation = YR? $(1 = yes, 0 = no)$	Binary
Lane	is_lane_R	Lane position = right? $(1 = yes, 0 = no)$	Binary
position	is_lane_M	Lane position = middle? $(1 = yes, 0 = no)$	Binary

ML Models for Travel Time Prediction

4 models

- Decision Tree Regression
- Support Vector Regression
- Random Forest
- XGBoost

Model output

Predicted travel time from advance to stop-bar

Training procedure

Train/validation/test splits

T1: model trained on training data & evaluated on validation set

T2: model trained on training data & evaluated on test set

T3: model trained on combined training and validation data & evaluated on test set

Optimization Model for Reidentification

Parameters

 $L_{ij} = \begin{cases} 1, & \text{if candidate ReId pair } (i,j) \text{ belongs to the same lane} \\ 0, & \text{otherwise} \end{cases}$

Decision variables

 $y_{ij} = \begin{cases} 1, & \text{if candidate ReId pair } (i,j) \text{ is selected} \\ 0, & \text{otherwise} \end{cases}$

Objective function

$$\min Z = \sum_{i} \sum_{j} y_{ij} E_{ij}$$

Constraints

$$t_{min} \le t_{ij} \le t_{max}$$
 $\forall (i,j)$

$$E_{ij} = \left| t_{ij} - t_i^{pred} \right| \qquad \qquad \forall (i,j)$$

$$\sum_{i} y_{ij} \le 1 \qquad \qquad \forall i$$

$$\sum_{i} y_{ij} \leq 1$$

$$y_{ij} \in \{1,0\} \qquad \forall (i,j)$$

$$L_{ij} \in \{1,0\}$$
 $\forall (i,j)$

$$\forall (i,j)$$

Performance Evaluation

Travel Time Prediction

Ground-truth: t_{ij} Predicted: t_{ij}^{pred}

Reidentification

Ground-truth: y_{ij}^{ground} Predicted: y_{ij}^{pred}

337 Reld pairs as test samples

Performance Evaluation

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{t_{ij} - t_i^{pred}}{t_{ij}} \right| \cdot 100 \%$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (t_{ij} - t_i^{pred})^2}{n}}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 * Precision * Recall}{Precision + Recall}$$

Model Performance Metrics

	В	est Travel I	Time Predict	ion	Best Vehicle Reidentification			
Metrics	DTR	SVR	Random Forest	XGBoost	DTR	SVR	Random Forest	XGBoost
MAPE ^(T1)	12.18%	13.23%	12.05%	12.05%	12.34%	13.42%	12.01%	12.20%
MAPE(T2)	11.84%	13.99%	12.19%	11.49%	11.91%	14.15%	12.18%	11.82%
$MAPE^{(T3)}$	11.68%	13.97%	12.04%	11.31%	11.71%	14.27%	12.24%	11.70%
RMSE ^(T1)	0.9196	0.9574	0.8663	0.8618	0.9386	0.9535	0.8622	0.8718
RMSE ^(T2)	0.9679	1.0287	0.9160	0.8858	0.9723	1.0194	0.9219	0.8873
RMSE ^(T3)	0.9513	1.0366	0.9118	0.8722	0.9505	1.0281	0.9163	0.8717
TP	303	303	302	308	304	304	306	310
FP	19	18	22	17	18	16	19	15
FN	34	34	35	29	33	33	31	27
Precision	94.10%	94.39%	93.21%	94.77%	94.41%	95.00%	94.15%	95.38%
Recall	89.91%	89.91%	89.61%	91.39%	90.21%	90.21%	90.80%	91.99%
F1 score	0.9196	0.9210	0.9138	0.9305	0.9226	0.9254	0.9245	0.9366

Metrics: Best Prediction Model

	В	est Travel I	Time Predicti	ion	Bes	st Vehicle F	Reidentificati	on
Metrics	DTR	SVR	Random Forest	XGBoost	DTR	SVR	Random Forest	XGBoost
MAPE ^(T1)	12.18%	13.23%	12.05%	12.05%	12.34%	13.42%	12.01%	12.20%
$MAPE^{(T2)}$	11.84%	13.99%	12.19%	11.49%	11.91%	14.15%	12.18%	11.82%
$MAPE^{(T3)}$	11.68%	13.97%	12.04%	11.31%	11.71%	14.27%	12.24%	11.70%
RMSE ^(T1)	0.9196	0.9574	0.8663	0.8618	0.9386	0.9535	0.8622	0.8718
RMSE ^(T2)	0.9679	1.0287	0.9160	0.8858	0.9723	1.0194	0.9219	0.8873
RMSE ^(T3)	0.9513	1.0366	0.9118	0.8722	0.9505	1.0281	0.9163	0.8717
TP	303	303	302	308	304	304	306	310
FP	19	18	22	17	18	16	19	15
FN	34	34	35	29	33	33	31	27
Precision	94.10%	94.39%	93.21%	94.77%	94.41%	95.00%	94.15%	95.38%
Recall	89.91%	89.91%	89.61%	91.39%	90.21%	90.21%	90.80%	91.99%
F1 score	0.9196	0.9210	0.9138	0.9305	0.9226	0.9254	0.9245	0.9366

Metrics: Best Prediction Model

	В	est Travel 7	Time Predicti	ion	Best Vehicle Reidentification			
Metrics	DTR	SVR	Random Forest	XGBoost	DTR	SVR	Random Forest	XGBoost
MAPE ^(T1)	12.18%	13.23%	12.05%	12.05%	12.34%	13.42%	12.01%	12.20%
$MAPE^{(T2)}$	11.84%	13.99%	12.19%	11.49%	11.91%	14.15%	12.18%	11.82%
$MAPE^{(T3)}$	11.68%	13.97%	12.04%	11.31%	11.71%	14.27%	12.24%	11.70%
$RMSE^{(T1)}$	0.9196	0.9574	0.8663	0.8618	0.9386	0.9535	0.8622	0.8718
RMSE ^(T2)	0.9679	1.0287	0.9160	0.8858	0.9723	1.0194	0.9219	0.8873
RMSE ^(T3)	0.9513	1.0366	0.9118	0.8722	0.9505	1.0281	0.9163	0.8717
TP	303	303	302	308	304	304	306	310
FP	19	18	22	17	18	16	19	15
FN	34	34	35	29	33	33	31	27
Precision	94.10%	94.39%	93.21%	94.77%	94.41%	95.00%	94.15%	95.38%
Recall	89.91%	89.91%	89.61%	91.39%	90.21%	90.21%	90.80%	91.99%
F1 score	0.9196	0.9210	0.9138	0.9305	0.9226	0.9254	0.9245	0.9366

Metrics: Best Reidentification Model

	В	est Travel 7	Time Predicti	ion	Best Vehicle Reidentification			
Metrics	DTR	SVR	Random Forest	XGBoost	DTR	SVR	Random Forest	XGBoost
MAPE ^(T1)	12.18%	13.23%	12.05%	12.05%	12.34%	13.42%	12.01%	12.20%
$MAPE^{(T2)}$	11.84%	13.99%	12.19%	11.49%	11.91%	14.15%	12.18%	11.82%
$MAPE^{(T3)}$	11.68%	13.97%	12.04%	11.31%	11.71%	14.27%	12.24%	11.70%
$RMSE^{(T1)}$	0.9196	0.9574	0.8663	0.8618	0.9386	0.9535	0.8622	0.8718
$RMSE^{(T2)}$	0.9679	1.0287	0.9160	0.8858	0.9723	1.0194	0.9219	0.8873
RMSE ^(T3)	0.9513	1.0366	0.9118	0.8722	0.9505	1.0281	0.9163	0.8717
TP	303	303	302	308	304	304	306	310
FP	19	18	22	17	18	16	19	15
FN	34	34	35	29	33	33	31	27
Precision	94.10%	94.39%	93.21%	94.77%	94.41%	95.00%	94.15%	95.38%
Recall	89.91%	89.91%	89.61%	91.39%	90.21%	90.21%	90.80%	91.99%
F1 score	0.9196	0.9210	0.9138	0.9305	0.9226	0.9254	0.9245	0.9366

Metrics: Best Reidentification Model

	В	est Travel I	Time Predicti	ion	Bes	Best Vehicle Reidentification			
Metrics	DTR	SVR	Random Forest	XGBoost	DTR	SVR	Random Forest	XGBoost	
MAPE ^(T1)	12.18%	13.23%	12.05%	12.05%	12.34%	13.42%	12.01%	12.20%	
MAPE(T2)	11.84%	13.99%	12.19%	11.49%	11.91%	14.15%	12.18%	11.82%	
$MAPE^{(T3)}$	11.68%	13.97%	12.04%	11.31%	11.71%	14.27%	12.24%	11.70%	
$RMSE^{(T1)}$	0.9196	0.9574	0.8663	0.8618	0.9386	0.9535	0.8622	0.8718	
$RMSE^{(T2)}$	0.9679	1.0287	0.9160	0.8858	0.9723	1.0194	0.9219	0.8873	
RMSE ^(T3)	0.9513	1.0366	0.9118	0.8722	0.9505	1.0281	0.9163	0.8717	
TP	303	303	302	308	304	304	306	310	
FP	19	18	22	17	18	16	19	15	
FN	34	34	35	29	33	33	31	27	
Precision	94.10%	94.39%	93.21%	94.77%	94.41%	95.00%	94.15%	95.38%	
Recall	89.91%	89.91%	89.61%	91.39%	90.21%	90.21%	90.80%	91.99%	
F1 score	0.9196	0.9210	0.9138	0.9305	0.9226	0.9254	0.9245	0.9366	

Training Procedure & Model Performance

	В	est Travel I	Time Predict	ion	Best Vehicle Reidentification			
Metrics	DTR	SVR	Random Forest	XGBoost	DTR	SVR	Random Forest	XGBoost
MAPE ^(T1)	12.18%	13.23%	12.05%	12.05%	12.34%	13.42%	12.01%	12.20%
$MAPE^{(T2)}$	11.84%	13.99%	12.19%	11.49%	11.91%	14.15%	12.18%	11.82%
$MAPE^{(T3)}$	11.68%	13.97%	12.04%	11.31%	11.71%	14.27%	12.24%	11.70%
RMSE ^(T1)	0.9196	0.9574	0.8663	0.8618	0.9386	0.9535	0.8622	0.8718
RMSE ^(T2)	0.9679	1.0287	0.9160	0.8858	0.9723	1.0194	0.9219	0.8873
RMSE ^(T3)	0.9513	1.0366	0.9118	0.8722	0.9505	1.0281	0.9163	0.8717
TP	303	303	302	308	304	304	306	310
FP	19	18	22	17	18	16	19	15
FN	34	34	35	29	33	33	31	27
Precision	94.10%	94.39%	93.21%	94.77%	94.41%	95.00%	94.15%	95.38%
Recall	89.91%	89.91%	89.61%	91.39%	90.21%	90.21%	90.80%	91.99%
F1 score	0.9196	0.9210	0.9138	0.9305	0.9226	0.9254	0.9245	0.9366

Model Hyperparameters

The **best travel time prediction** models, compared to the vehicle reidentification models, tended to **marginally overfit** the predicted travel time.

Model	Total combinations	Hyperparameters	Values
Decision tree regression	270	max_depth min samples split min_samples_leaf max features criterion	[None, <u>5</u> , 10, 20, 30] [<u>2</u> , 5, 10] [<u>1</u> , 2, <u>4</u>] [<u>None</u> , 'sqrt', 'log2'] ['friedman_mse', ' <u>absolute_error</u> ']
Support vector regression	108	kernel C epsilon degree	[' <u>linear</u> ', 'rbf', 'poly'] [<u>0.1</u> , 1 , 10] [<u>0.01</u> , 0.1, 0.2, 0.5] [<u>2</u> , 3, 4]
Random forest	360	n_estimators max depth min_samples_split min samples leaf max_features	[50, 100, 200, 500] [None, 5, 10, 15, 20] [2, 5, 10] [1, 2, 4] ['sqrt', 'log2']
XGBoost	6480	n_estimators learning rate max_depth min child weight gamma reg_alpha reg lambda	[50, <u>100</u> , 200 , 300] [0.01, 0.1, <u>0.2</u>] [3 , <u>4</u> , 5, 7, 10] [1, 3, 5 , <u>7</u>] [<u>0</u> , 0.1 , 0.2] [0, <u>0.1</u> , 0.5] [0, 0.1 , <u>0.5</u>]

Note: optimal hyperparameter combination for the best travel time prediction results are underlined, while that for the best vehicle reidentification results are in bold

Correlation of Error in Travel Time Prediction

XGBoost model's
hyperparameter
combination for best
reidentification predicted
travel time values with less
overfitting (with some noise
or randomness).

Comparison with Analytical Methods

Reidentification Methods	TP	FP	FN	Precision	Recall	F1 score
Ding's analytical method*	241	29	96	0.8926	0.7151	0.7941
Lu's analytical method*	260	29	77	0.8997	0.7715	0.8307
Proposed framework**	310	15	27	0.9538	0.9199	0.9366

Note: * vehicle lengths of 18 ft in Ding's method and 20 ft in Lu's method were estimated through a sensitivity analysis to yield best reidentification metrics; ** based on the hyperparameter combination for best reidentification; TP = true positive, FP = false positive, FN = false negative

Comparison with Analytical Methods

Reidentification Methods	TP	FP	FN	Precision	Recall	F1 score
Ding's analytical method*	241	29	96	0.8926	0.7151	0.7941
Lu's analytical method*	260	29	77	0.8997	0.7715	0.8307
Proposed framework**	310	15	27	0.9538	0.9199	0.9366

Note: * vehicle lengths of 18 ft in Ding's method and 20 ft in Lu's method were estimated through a sensitivity analysis to yield best reidentification metrics; ** based on the hyperparameter combination for best reidentification; TP = true positive, FP = false positive, FN = false negative

Comparison with Analytical Methods

Reidentification Methods	TP	FP	FN	Precision	Recall	F1 score
Ding's analytical method*	241	29	96	0.8926	0.7151	0.7941
Lu's analytical method*	260	29	77	0.8997	0.7715	0.8307
Proposed framework**	310	15	27	0.9538	0.9199	0.9366

Note: * vehicle lengths of 18 ft in Ding's method and 20 ft in Lu's method were estimated through a sensitivity analysis to yield best reidentification metrics; ** based on the hyperparameter combination for best reidentification; TP = true positive, FP = false positive, FN = false negative

Conclusions

Contributions

- Superior reidentification accuracy compared to existing models
 - 95.38% precision, 91.99% recall
- Easily transferrable for ReId at other intersections and detectors
- Advances using ML models and high-resolution data for vehicle ReId
- Travel time predicted using info from advance detector only
 - Real-time applications & adaptive signal control strategies

Future work

Dilemma zone boundary analysis

Acknowledgment

- Dr. Lansey, Dr. Wu, and Dr. Boccelli for R4R nomination
- Jeff, Michele, Tyson, Carlos, and Tina from R4R Program
- Armstrong Aboah for help with model architecture
- Henrick Haule (co-author)
- Cristina Reyes, Cynthia Eduwiges, Will Reuter (data collection)

<u>pramesh@arizona.edu</u> <u>pudasaini.com</u>

Research GitHub repo:

https://github.com/prameshpudasaini/vehicle_reidentification

